Friday, January 24, 2014

Commissioning: Electrical System for Mission Critical Supply (2)

Refer to Previous post: Commissioning: Electrical System for Mission Critical Supply (1)


Automatic Transfer Switch (ATS)

The ATS is an important component of the critical facility because it is used commonly in critical facility designs to transfer power from a primary source to a secondary source after the loss of the primary source.


Open transition ATSs are designed to allow for an interruption to the load using a break-before-make transfer. Because of this, loading the ATS during open transition transfers during functional performance testing is not required. Load is also not required when testing an ATS’s ability to perform closed transition transfers. During closed transition transfers, the ATS will parallel the primary and secondary sources prior to transferring.

It is important to ensure that the ATS can properly conduct closed transition transfers and will handle the transition in the same manner, regardless of whether it is carrying load or not. A power quality meter must be connected to the output of the ATS to confirm that the transfer is completed within the specified time for closed transition applications. It should be noted that load is required for all ATSs when conducting infrared scanning.

It is recommended that all components of the ATS are infrared scanned under full load on all primary, secondary, and bypassed power paths after final installation is complete. Load is also required for closed transition applications when the secondary source of the ATS is a generator. This testing is usually conducted as an integrated system test to prove that the generator and ATS work properly together under full load. The integrated system testing is conducted after functional performance testing for the ATS, generator, and other integral systems is completed.

In most cases, for an ATS to be functionally tested, both sources must be available because the ATS will usually inhibit any transfer if there is only one source. This problem can arise in situations where ATSs are added to existing live facilities. Because of their integral role in the power distribution system, they often can’t be tied into the electrical system without bringing down the loads that they will serve. In an effort to minimize disruption to the live facility, the ATS testing will likely occur prior to connecting it to the live facility.

However, the ATS can be connected to the secondary source if the secondary source is a generator. When the primary source serving the load is restored, there is usually limited time for testing the ATS as it will immediately be required to provide power to critical loads.


UPS

The UPS is a critical component to supporting critical loads, as it is the primary system responsible for maintaining continuity of load during a loss of utility. Courtesy: ESDThe UPS is probably the most important piece of equipment in the critical facility because of its ability to maintain power to critical loads, regardless of the operation of all of the other supporting systems.


Monitoring the inputs to the rectifier of the UPS, the static bypass within the UPS, and the UPS output bus is considered best practice during functional performance testing. After each transient, step load, or battery discharge test, the waveforms recorded by the power quality meters set up on the system should be reviewed to confirm that no events were triggered and that the output waveforms stayed within tolerance and recovered within the specified time frame.

UPS systems are often placed into service quickly after functional performance testing, so it is best to check the power quality meter results—including waveform captures—during on-site testing rather than waiting for a report from the meter technician. This way, any problem discovered during UPS testing can be quickly rectified as the manufacturer often has to consult the factory on problematic internal UPS operation.

Full load endurance tests should be conducted on UPS systems after the system has been installed on-site, even if full load testing was conducted in the factory. Many components need to be disconnected for shipping and are then reassembled on-site. Electrical equipment can also be affected by problems that develop during shipping and may not be detected without performing the endurance test on-site. Generally, an 8-hr duration for a full load test is considered adequate to confirm that the system will be capable of functioning at full rated load without problems.

In some cases, it can be difficult to monitor the logic used by the UPS to handle various operations because the actions are carried out by microprocessors installed on circuit boards. This emphasizes the importance of properly setting up power quality monitoring equipment prior to testing the UPS.

If a problem is detected during testing, the manufacturer will have a much easier time solving it if it is provided with significant data generated both by the UPS’s internal monitoring system and the external power monitoring equipment used during testing. When a failure occurs, it can be very difficult to understand what is happening inside the equipment. Captured test data almost always improves the issue resolution process.


Next Post: Commissioning: Electrical System for Mission Critical Supply (3)